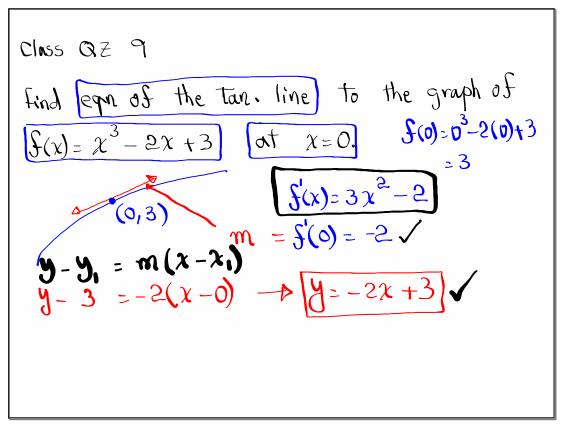


Feb 19-8:47 AM



what we know So Sar
1)
$$\frac{d}{dx} [c] = 0$$
 2) $\frac{d}{dx} [cf(x)] = cf'(x)$
3) $\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x)$
4) $\frac{d}{dx} [f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
5) $\frac{d}{dx} [\frac{f(x)}{g(x)}] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$
6) $\frac{d}{dx} [x^n] = n x^{n-1}$
7) $\frac{d}{dx} [Sinx] = Cos x \qquad \frac{d}{dx} [csc x] = -csc x cot x$
 $\frac{d}{dx} [cos x] = -Sin x \qquad \frac{d}{dx} [ct x] = -csc^2 x$

Mar 11-8:47 AM

Show
$$\frac{1}{dx} [\csc x] = -\csc x \cot x \sqrt{0}$$

 $\frac{1}{dx} [\csc x] = \frac{1}{dx} [-\frac{1}{\sin x}] = \frac{\frac{1}{dx} [-1 \cdot \sin x - 1 \cdot \frac{1}{dx} [\sin x]}{(\sin x)^2}$
 $= \frac{0 \cdot \sin x^{-1} \cdot \cos x}{\sin^2 x}$
 $= \frac{-\cos x}{\sin^2 x} = -\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x}$
 $= -\csc x \cot x$

TI.

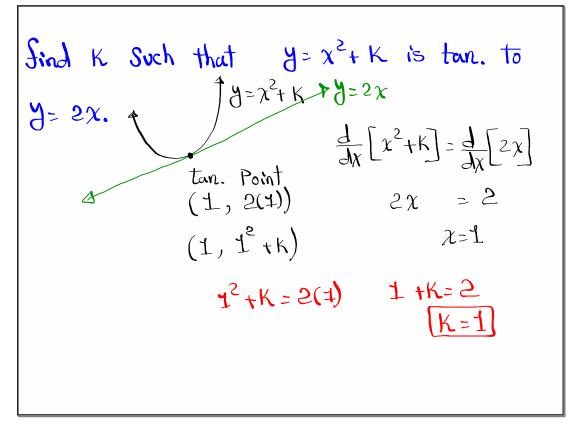
Mar 11-8:58 AM

Г

Sind the eqn of the normal line to the graph
of
$$f(x) = \chi^2 \sin x$$
 at $\chi = 1$.
 $f(x) = \chi^2 \sin x$ $f(x) = 1^2 \sin 1 + \sin 1$
 $f(x) = \chi^2 \sin x$ $f(x) = 1^2 \sin 1 + \sin 1$
 $f(x) = \chi^2 \sin x$ $f(x) = \frac{-1}{f'(x)} = \frac{-1}{2\sin 1 + \cos 1}$
we need $f'(x)$ $f(x) = \chi^2 \sin x$ $\approx -.45$
 $y - y_1 = m(\chi - \chi_1)$ $f'(x) = 2\chi \cdot \sin \chi + \chi^2 \cdot \cos \chi$
 $y - y_1 = m(\chi - \chi_1)$ $f'(x) = 2\sin 1 + \cos 1$
 $y \approx -.45\chi + .45 + \sin 1$
 $y \approx -.45\chi + .45 + \sin 1$
 $y \approx -.45\chi + 1.29$

Given
$$y = 5x^2 - 4x + 7$$
 Find
 $\frac{dy}{dx} = y' = 10x - 4$
 $\frac{d^2y}{dx^2} = y'' = \frac{d}{dx} [y'] = \frac{d}{dx} [10x - 4] = 10$
 $\frac{d^3y}{dx^3} = y''' = \frac{d}{dx} [y''] = \frac{d}{dx} [10] = 0$

Mar 11-9:18 AM

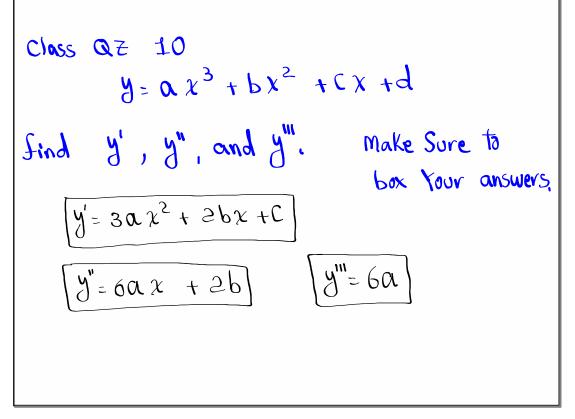


Sind points is there is any, on the graph of

$$f(x) = \frac{x}{x^2 + 9}$$
 where \tan line is horizontal.
 $f(-x) = \frac{-x}{(-x)^2 + 9} = \frac{-x}{x^2 + 9} = -\frac{x}{x^2 + 9} = -\frac{5(x)}{x^2 + 9}$
 $f(x)$ is an odd Sunction \rightarrow Symmetric \rightarrow Origin
 $x^2 + 9 \pm 0 \rightarrow$ Domain is $(-60, 00)$ No V.A.
 $x - \ln t$, $y - \ln t$ (0,0)
 $\lim_{x \to 0} 5(x) = 0$, $\lim_{x \to -\infty} 5(x) = 0$
 $f(x) = \frac{x}{2^2 + 9}$
 $f(x) = \frac{y}{2^2 + 9}$
 $f(x) = \frac{$

Mar 11-9:27 AM

If
$$f(x)$$
 is differentiable at $x=a$, then $f(x)$
is continuous at $x=a$.
Look it up.
Jind $\frac{J^2y}{Jx^2}\Big|_{x=\frac{\pi}{4}}$ if $y=Sec x$
 $y''(\frac{\pi}{4})$
 $y=Sec x$ $y'=Sec x$. $tan x$
 $y''=Sec x tan x \cdot tan x + Sec x \cdot Sec^2 x$
 $y''(\frac{\pi}{4})=Sec \frac{\pi}{4} \cdot tan \frac{\pi}{4} \cdot tan \frac{\pi}{4} + \left(Sec \frac{\pi}{4}\right)^3$
 $= J^2 \cdot 1 \cdot 1 + (J^2)^3$
 $= J^2 + 2J^2 = 3J^2$



Mar 11-9:47 AM